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ON WAVE-INDUCED STRESS IN A SHIP EXECUTING
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The equation of motion of a simple beam in head wavesissolved in terms of modal responses. Examination
of the resulting expression for wave-induced bending moment indicates that at lower wave frequencies
large fluctuating stresses are generally associated with ‘ship-wave matching’, a phenomenon governed
by the relative geometry of ship and wave; whereas large stresses in the higher frequency range are the
result of ¢ resonant encounter’, during which the encounter frequency of ship with wave corresponds to a
natural vibration frequency of the ship as a beam. The contrasting characteristics of these different response
mechanisms are shown to provide a rational explanation of the fluctuating stresses induced in large or
flexible ships in confused seas.
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2 R.E.D.BISHOP AMD R.EATOCK TAYLOR

1. INTRODUCTION

‘There seems little doubt that, for design purposes, ship research must in the future be increasingly
concerned with the dynamic nature of the loading and response of the structure.” This comment
concludes the Introduction of the Report to the Fourth International Ship Structures Congress
by the Committee concerned with Design Procedure (Committee 10), and it is typical of many
such remarks recorded in the Proceedings of that Congress in 1970. The work described here is
concerned with these problems. It is intended to be a first step in the development of a unified
approach to ship structural dynamics, bridging where possible the gap between hydrodynamics
and structural analysis, and drawing together within a common framework the different calcula-
tions commonly made for the various types of excitation and response. The approach is based on
the belief that a unified theory is a prerequisite to achieving satisfactory methods for rational ship
design. The criteria checked at the design stage must embody both strength and stiffness
considerations.

Problems of propeller and wave-excited vibrations have recently been accentuated by the
gencral growth in ship size and resulting reduction in natural frequencies of primary and
secondary structures. The increased power and speed and the decreased structural damping of
many modern ships have also contributed to these problems. Such matters should be considered
at the design stage, and analysis of a given design should examine these aspects along with the
properties commonly associated with conventional seakeeping and wave bending moment
calculations. That these should all be analysed by a unified theory is logical. For future specialized
ships that may be very large, slender and relatively flexible, any other approach may be invalid.

A fundamental problem is that of obtaining long-term stress predictions.T Two methods may
be distinguished: (i) statistical analysis of full-scale stress measurements; (ii) theoretical methods
based on model tests or computed response amplitude operators, combined with weather
statistics. It is to the latter that attention is particularly drawn here, since these methods seem to
hold out the most promise for new types of ship, whose response may not always be satisfactorily
extrapolated from previous tried designs. But where possible results should of course be correlated
with full-scale measurements, such as from the twelve ships (including tankers, bulk carriers and
fast cargo ships) currently subject to extensive instrumentation under the auspices of the British
Ship Research Association.

Consider first the behaviour of a ship in waves characterized by its response in heave and pitch.
The fundamental phenomenon has been discussed most elegantly in the classic paper by
Weinblum & St Denis (1950). Theoretical methods of obtaining response amplitude operators by
‘strip theory’ and ‘slender body theory’ have been described by Korvin-Kroukowsky & Jacobs
(1957) and Grim (1960). Typical results of computations based on these theories are given by
Fukuda (1966), Gerritsma & Beukelman (1967) and Kaplan (1969). Some representative model
test results are in the papers by Moor (1967) and Joosen, Wahab & Woortman (1968). Much
research in all these areas is recorded in the reports of the relevant committees of the International
Ship Structures Congress and the International Towing Tank Conference (e.g. I.5.5.C. (1970)
and I.T.T.C. (1969)). It is a feature of most of this work that results are only given for wave-
lengths greater than about halfa ship length. Smaller waves were of little interest since in a seaway
they would have had relatively little energy, besides which they are difficult to reproduce in

t The still water zero frequency bending moment is here ignored, since it may be considered independently of
dynamic wave effects.
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 3

experimental tanks. With the increase in size of today’s ships this deficiency is becoming an
embarrassment.

Next consider wave-induced vibration. This has only lately attracted the attention of many
naval architects, because of the experience of recent large tankers, container ships and Great
Lakers. Analyses have been given by Goodman (1971) and van Gunsteren (1970) in which
wave-excited stresses have been calculated ignoring heaving and pitching. Full-scale measure-
ments have been given by Cleary, Robertson & Yagle (1971) for Great Lakers, and by Little &
Lewis (1971) for tankers and bulk carriers. No comprehensive results of model tests have been
reported, as far as these authors are aware.

It may seem surprising that this subject has been treated in the past in a somewhat frag-
mented manner. Response in waves has certainly always been a matter of fundamental
importance in assessing the performance of ships. A ship’s very survival depends on the success
of the naval architect in ensuring that the stresses at all times remain within certain limits. But
almost invariably design stresses have effectively been calculated (ifat all) by estimating amidship
bending moments on the basis of the ship responding in waves as a rigid beam. Only recently has
consideration been given to the flexibility of the beam and analysis made of wave-induced
vibrations, but as a separate phenomenon. It may be argued that traditional methods are amply
vindicated by the satisfactory performance of most of the ships today sailing the high seas. But it
is now recognized by many that these methods are in some cases deficient. At comparatively
moderate levels of vibratory stress cumulative damage by fatigue could have a marked influence.
And it has been suggested (for example by Committee 3 of the Fourth I1.S.S.C. in 1970) that in
certain large ships wave vibration stresses could be of comparable magnitudes to normal wave
stresses. It is intended that the analysis which follows should lead to a rational assessment of these
and other problems of the structural dynamics of ships.

The first stage is to achieve an understanding of the nature of the various problems, before
proceeding to the development of computational tools for practical design. It was proposed by
Bishop (1971) that this should be achieved by analysing the structural dynamics of the ship in
terms of modal responses; the idea was advanced in a public lecture so that only a rudimentary
analysis could be given by way of illustration. The underlying theoretical ideas were developed
and presented in the technical literature by Bishop, Eatock Taylor & Jackson (1973). This paper
records first steps in the process of translating the basic theoretical concepts into something of
practical value. It describes a modal analysis of a simple floating beam in symmetric motions,
under the limiting assumptions imposed by a severe simplification of the hydrodynamic behaviour.
It outlines the development of modes, motion responses and bending-moment response amplitude
operators for the beam in a confused seaway.

Notation
a wave amplitude
4,B wave spectrum parameters
b(x) beam of ship at point x
by amidship beam of ship
C, normalizing constant in directional wave spectrum

El(x) flexural rigidity of ship at point x
Sk, fV(KL), f1(kl) functions for amidship bending moments
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4 R.E.D.BISHOP AND R.EATOCK TAYLOR
Fr Froude number (= U//(gl))

Fy(x,t) force per unit length acting on ship

F(kl,¢) generalized force corresponding to rth characteristic mode

g gravitational acceleration

hy significant wave height

hyY (w,n), hy(w,n) amidship bending moment operators for directional seas
H,(we) frequency response function

k wavenumber (= 2/A4)

{ length of ship

M(x,t) bending moment at x

MEB (kL x,t), ME(kL x,t) generalized bending moments

MW (kl, x,t) quasi-static bending moment

M,(x) bending moment during oscillations in still water
M, My, root mean square bending moment coefficients

n directional spread exponent in wave spectrum
(1) rth principal coordinate

7,8 index defining mode (r = —1,0,1,2,..., 5 = —1,0)
S(w) unidirectional wave spectrum

S*(w, 0) directional wave spectrum

Si(we, U) transformed wave spectrum

Si(we, U) averaged, transformed wave spectrum

¢ time

U forward speed of ship

w(x, 1) downward deflexion at x

By = [(w'w} —pgb)[EITE

§(x,2) wave depression

7 damping factor

7 angle between wave component and predominant wave direction
A wavelength

p(x) mass per unit length of ship at x

Ho(%) added mass per unit length of ship at »

(%) virtual mass per unit length of ship at »

s generalized virtual mass of ship in rth characteristic mode
I3 non-dimensional coordinate (= x/!)

p water density

o non-dimensional parameter (= }k/)

T non-dimensional frequency (= wy/w,)

We frequency of encounter

®m ship—wave matching frequency

w, rth characteristic frequency
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 5

2. RESPONSE OF A SHIP IN PROGRESSIVE SINUSOIDAL WAVES
2.1. The idealization of a simple floating beam

The simple structural model to which attention is here directed is a floating beam in which
shear deformation and rotary inertia are ignored. The beam is initially considered to have non-
uniform flexural stiffness EI(x) per unit length and mass distribution x#(x) per unit length, and
subsequently the special case of a uniform beam is developed in some detail. Discussion of the
latter will also be found in Bishop ef al. (1973).

Sweeping simplifications are made concerning the behaviour of the fluid in which the beam
floats. We assume that the interaction of beam and fluid may be represented through use of the
sectional added mass p4(x), and added stiffness pgb(x), per unit length. These quantities are taken
to be time independent during arbitrary motions of the beam; thus for harmonic vibrations they
do not depend on frequency. We ignore hydrodynamic damping, apart from brief consideration
of possible effects of dissipative damping due to wave generation. And we assume that vertical
motions of the beam are independent of any forward velocity it may have through the fluid.

When discussing wave excitation, we further assume that the exciting force is simply the
hydrostatic resultant due to the wave elevation. Thus we ignore interference between beam and
wave, and the orbital velocities of wave particles which lead to attenuation of pressure amplitudes
with depth (the Smith effect). The waves are taken to be sinusoidal progressive waves in deep
water, with wavenumber £, encountered at frequency we.

We refer to this mathematical model as the simple floating beam.

2.2, The equation of motion and its solution in terms of the characteristic
modes of a simple floating beam

The equation of vertical motion of the beam is written in terms of the downward deflexion
w(x,?). At a section x in this simple idealization the hydrodynamic force opposing the motion is

02w
P +pghw.
The wave excitation force is pgb{, where the wave depression ¢ is given by
{(#,t) = asin (wet—kx). (2.1)

Hence the equation of motion (ignoring damping at this stage) is

w0 w\ o

which may be written in the form
02 0%w ,0%w
Py (EI a‘x?) +pgbw+ ' =5 = pgb, (2.2)
where the virtual mass per unit length is
W= et .

Let us first examine the case of free vibrations. We consider the homogeneous equation, and

assume that motions of the form
w(x,t) = ¢,(x) sinw,¢ (2.3)
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6 R.E.D.BISHOP AND R. EATOCK TAYLOR

can take place. The quantities », and ¢,(x) are the natural frequency and corresponding charac-
teristic mode for the non-uniform beam. The functions ¢,(x) satisfy

& (1%,
dxz (E[ d 2) +pgb¢r M wr¢r = 0. (24)
Hence they may be shown to satisfy the orthogonality relations
t, [0 if rs .
[resmama={5 (25)

where i, is the gencralized mass corresponding to the rth characteristic mode.

Thus the beam may vibrate in one or more of an infinity of characteristic modes. The mode
shapes ¢,(x) depend on the distribution of virtual mass and stiflness of the beam; though they are
not generally expressible in simple analytical form, they reduce to simple well-known results in
the case of a uniform beam. The lowest two modes for a uniform beam are found to have certain
special properties, and it is convenient to associate these with » = — 1, 0. We shall use this notation
both for uniform and for non-uniform beams. The higher modes correspond tor = 1,2, 3, ..., co.

To obtain the solution of the equation of motion in waves, we therefore let

w(x, t) = rill’r(t) $:(%), (2.6)

where p,(¢) is the rth principal coordinate of the system. Substituting this in the equation of
motion, (2.2), we obtain

2 005 (B0 T+ S 400 40+ A0 200 8100

= apgb(x) sin (wet—kx).

Using (2.4) forr = —1, 0, 1, 2, ..., we find that this may be written

S B0 06 )+ 5 a2, (0)1(3) L) = apgd(x) sin (0ot — k).

-

Next we multiply this equation by ¢,(x), integrate over the range 0 < x < /, and use the ortho-
gonality relations of (2.5), to write the equation of motion in the form

i+ w3p,) = ali(KL, 1),

where we have defined the rth generalized excitation force as
1
F(k, ) —_-f pgb(x) §,(x) sin (0ol —~kx) dx  (r=—1,0,1,2,...). (2.7)
0

"T'he stcady-state modal responses are given by

i) = S0

Hence the solution of the equation of forced vibration in waves is

w(x, t) = )_m] qE—(—kl——-——’ ) ¢T(x). (2.8)

2y 0= aR)
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 7

We notice that resonance is possible in any mode 7 if w, — we. Moreover, the response in mode
r behaves as F,(kl,{), and may be magnified if £/ has an appropriate value. Response near the
lowest two natural frequencies is equivalent to ‘sea-keeping’ behaviour, whereas response in the
higher modes corresponds to what is conventionally considered ship vibration. For a non-uniform
ship there seems to be little theoretical justification for this distinction, but it has proved useful in
practice. This is because for most ships, which as beams are relatively ‘stiff’, the frequencies w_,
and v, are close, and considerably lower than w,, w,, etc.: the responses are therefore considered
independently in the low- and high-frequency régimes.

2.3. Wave bending moments in the simple beam

The bending moment at any section ¥ may be found from the moment-curvature relation

Q2w (x, 1)

M(x,t) = El(x) P (2.9)
If the series form of w(x, ¢) given in (2.8) is substituted in (2.9), this leads to the result
y s ab (k1) El(x) §1(x)
M(x,t) = X AT oh) (2.10)
" d2¢r
where hp(x) = I

From the point of view of calculating the bending moment at some section x, however, this
series form of M(x, ¢) is not satisfactory: the modal contributions converge only very slowly. A more
useful form, which also provides a very simple expression for the special case of a rigid beam, may
be obtained using some identities derived in appendix A. We first define the quantity

. . . My(x) = EI(x) ¢y (x).
It is shown in appendix A that

1(5) = [ 711 02 pb()] 30 (3 =)

and we see that this is the amplitude of bending moment at x due to oscillations of unit magnitude
in still water, at frequency o, in the rth characteristic mode. [It is possible to attach a physical
meaning to these still water fluctuating bending moments for the case of a rigid beam. Then only
two modes exist, ¢_; and ¢, since there are only two rigid body degrees of freedom for motions in
the vertical plane. These correspond to pitch and heave respectively. Thus M_, (x) is the amplitude
of bending moment at x due to oscillations of unit amplitude in still water in the pitching mode,
at frequency »_;. And a similar meaning attaches to M,(x) for unit heaving. These bending
moments arise because, in contrast to the behaviour for a uniform beam pitching or heaving at
the appropriate natural frequency, the buoyancy forces are no longer exactly opposed by the
D’Alembert inertia forces at every point along the beam. When the forces are integrated over the
length of the beam balance is achieved, but at any section within the non-uniform beam the
resulting out of balance forces give rise to a bending moment.]

The next step in finding an alternative expression for the total wave bending moment M (x, ¢)
in (2.10) is to use the second identity derived in appendix A:
v § B

il
r==1 My

&.(x) = pgb(x) sin (wet — kx).
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8 R.E.D.BISHOP AND R. EATOCK TAYLOR

Interchanging the order of summation and integration in (2.10) we obtain finally

(s, 1) = a | pebe)sim (ot =)+ 5 LD 1 1) g0 | 3 )
(2.11)

As might be expected, this alternative form of M (x, #) may also be obtained directly by physical
arguments. If the external forces acting on the beam are Fy per unit length, the bending moment
at ¥ may be written

M(x,t) =f:(1‘u ,uatz)(x — %) dx,.

Now in deriving the equation of motion, we have assumed that the external forces are the fluid
forces given by
0%w
I = pgbl— | pto 5 +pghu| .

Hence we have

MG, 1) = [ | et 5,00 =030 () 5] (v ) i

If the series form of w(¥, ¢) in (2.8) and the wave depression {(x, ¢) given in (2.1) are substituted
into this equation, the expression in (2.11) is again obtained.

In order to distinguish between lower and higher frequency responses, as suggested above, it is
convenient to write M(x, ) such that the summation includes only contributions from the higher
modes r = 1, 2, .... Thus

M(x,t) = a f i pgb(x) {sin (wet —kx) — [F"I(I;_f, ?wgi‘l(x“) + FO(M_;Z?Q)?(%)] }(x — %) dxg

+df0 1001 [/u’ ('j;)(we f:fzb)(xo)]ﬁ;(kl’ t) ¢r(x0) (x_xo) dxo

Py (kly t) M_y(x) | Fy(kL,2) Mo(x)]

+awy, = —
¢ l:wz—lﬂ'—l(w%—l —w3) T"’%ﬂ*o(“’% —-o3)]’

(2.12)

where we have used the quantities M_,, M, defined previously. For convenience this can be
written in the form

M(x,t) = MW(klxt)+2 “’OMH(kz 50+

8=—1

(.()2
S MYk, 5,0); (2.13)

2
(t)s—

MW is given by the first integral in (2.12), MH is given by

MG, 3, 1) = by (i ) [ AP g () (o) dny (7= 1,3, )

AC
and MY is given by
F,(kl, t) M(x)

L —
ME (kL x,8) = S

(s =—1,0).

For the purposes of discussing the behaviour of the total wave-induced bending moment in the
simple beam, the last form, given by (2.13), is particularly useful. We see that M fluctuates with
encounter frequency we. If this is close to a natural frequency resonant motions will occur, and
it may be expected that large bending moments will be set up. In the low-frequency range these
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 9

will depend on the behaviour of M¥ (s = — 1, 0), whereas in the high-frequency range the term
M (r = 1,2, ...) will be of fundamental importance. When such a resonant condition prevails,
we shall refer to the phenomenon as ‘resonant encounter’, following the terminology of Bishop
et al. (1973). Other cases for which the possibilities of large bending moments arise are associated
with those values of £l which lead to large values of MW, MM or M}. Such a phenomenon is called
‘ship—wave matching’ in this terminology, since a condition on £/ is equivalent to a condition on
the ratio, ship length: wavelength. In theory resonant encounter and ship~wave matching may
occur together.

It should be noted that the contribution MW is never associated with resonant encounter. It is
in fact related to the wave bending moment which is obtained by balancing the beam statically
on a wave. We refer to MW as the ‘quasistatic’ wave bending moment.

In a ship, the phenomena just described are of course modified by damping. This is relatively
high in the first two modes, because at these lower frequencies significant energy may be dissipated
by surface wave radiation away from the oscillating ship. In the higher modes, however, hydro-
dynamic damping is generally very low, and since structural damping in the hull girder is also
relatively low, large magnification factors apply to the higher frequency resonances. Hence at
higher frequencies of encounter the behaviour of the bending moment is predominantly deter-
mined by the terms in M. At lower frequencies, however, these terms are negligible.

It is worth while therefore to consider independently the low- and high-frequency charac-
teristics of M(x, t). The bending moment in a uniform beam may most conveniently be examined
since the characteristic modes and frequencies in this case are very simply obtainable. Unfortu-
nately, however, certain degeneracies occur for the lowest two modes of a uniform beam, and we
must first consider the low-frequency behaviour for a non-uniform beam.

2.4, Low-frequency wave bending moments

We have in mind here frequencies considerably below that conventionally considered as the
lowest natural vibration frequency of a ship’s hull, which corresponds to vertical flexure in the
two node mode. In other words we are dealing with the range for which we < w,, r = 1,2, ...,
This means that in the general expression for bending moments, (2.13), we may neglect the
contributions from all the higher modes r = 1,2, ..., since they will generally be about two orders
of magnitude smaller than the remaining terms.

Consider, therefore, the contributions to the bending moment given by the quasistatic term
and the terms leading to resonant encounter in the lowest two modes. Thus

Mint) = MY (ke + x 28 ME(EL% 1)

o="1,00 (1 —0Fw]) (214)
This is related in a complex manner to the characteristic functions ¢_,(x) and ¢,(x). Hence the
bending moment is likely to be influenced by the distortions involved in the lowest modes of a
non-uniform flexible beam. It seems, however, that for a relatively stiff beam this influence must
be small, and it is useful to consider the behaviour of a ship assuming it to act as a rigid beam at
these low frequencies. It would appear worth while to investigate subsequently the significance
of hull flexibility in the lowest modes.

If the quantity MW (kl, x,t) is calculated using the characteristic modes of a rigid ship (pitching
and heaving) its amplitude is found to be identical to the expression obtained from a quasistatic
analysis. In this the ship is in equilibrium in a sinusoidal wave, and the bending moment at a
section x is calculated by finding the moment arising solely from the differential buoyancy forces

2 Vol. 275. A.
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10 R.E.D.BISHOP AND R. EATOCK TAYLOR

due to the wave. MW is thus related to the orthodox quasistatic bending moment calculation
which, modified to allow for the orbital motion of wave particles (the Smith correction), formed
the basis of ship stressing for many years. Itis for this reason that we have called MW the quasistatic

term, even for a non-rigid ship.
bo

Ficure 1. Uniform and parabolic planform beams. b(x) = b,[1 —4a(x/l— })?].

Still retaining the assumption of a rigid ship, we see that our simple dynamic analysis contains
terms additional to M'W. These involve the magnification factors 1/(1 — w2/w?), s = 1, 2. For areal
ship damping plays a very important role in these lower modes introducing, among other effects,
a severe limitation on the magnification factor. But before examining in a rudimentary manner
this influence of damping, let us consider the undamped bending moment at the midship section
of a beam completely symmetric fore and aft. For simplicity in obtaining the analytic expressions
we assume a beam of parabolic waterline planform (see figure 1), of rectangular cross-section, in
which the virtual mass is taken as being uniformly distributed. Although severe, these restrictions
are not such as to remove all semblance of reality from the resulting mathematical model.

We therefore obtain A (x, t) for the case when the quantities #’ and pgb are given by

#'(x) = constant,
pgb(x) = pgho[1—a(1—2x/)%],

where b, is the maximum breadth of the beam. The analysis is outlined in appendix B, leading to
the following definitions of the terms in (2.14):

MW (kL §,t)

dbPa = fo¥ (ki) sin (wet— }kl),
0
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 11

MYy (kl, 3, 1) = 0,

Mg (KL, 3L, 0)

PN, = fE(kl) sin (wet — 3kI),

where f§V and fI are given in appendix B. The amplitude of the amidship bending moment is

th i b
en given by M3 WD) + wilw? FI(k) (2.15)
pgbol2a 7° o )

1 — wifwf

The functions f3¥ (kl) and f¥'(kl) are plotted in figures 2 and 3 for the cases @ = 1 and « = 0.5
respectively, corresponding to waterline plans indicated in figure 1. In these graphs the abscissa
is the ratio of ship length [ to wavelength 4, and in deep water
[

l 2
kl—2-rrz—w§.

The qualitative manner in which the quasistatic term and the resonant encounter term contribute
to the total bending moment may be deduced from these curves. But firstitis necessary to examine
the relative magnitudes of the relevant frequencies, and next to give some consideration to damp-
ing in real ships.

0.04
0.03[
0.02— W , 002
' 3
B 0.01~ g
Ho
= | %S
d
do O 0
'N\
-001 -0.01
-0.02
Ficure 2. Bending moment functions Ficure 3. Bending moment functions
/Y, Jy for beam of parabolic S, f& for beam of parabolic plan-
planform (@ = 1.0). form (@ = 0.5).

Taking the case & = 1 as an example, we see that the maximum value of the quasistatic wave
bending moment occurs for a ship length [ wavelength ratio of about 1.32. This value corresponds
to the condition we have defined above as ship—wave matching, and it is equivalent to a wave
frequency given by

wm = 2.88,/(g/l).

Now the resonant frequency in heave w, depends on the proportions of the ship and on the added
mass (itself dependent on frequency for a real ship, though we shall here ignore this added
complexity). It appears that, for most conventional ships, , is of the same order of magnitude as
the value wn giving ship-wave matching, in many cases o, being slightly larger.
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12 R.E.D.BISHOP AND R.EATOCK TAYLOR

Turning to the encounter frequency we, and limiting our considerations to head seas, we
observe that if the ship has forward velocity the frequency of encounter corresponding to ship—
wave matching wen is larger than the absolute wave frequency wy. Therefore for the cases referred
to above, the ship need proceed at only a relatively low speed to reach the condition wem = w,.
Stated another way, the condition for ship-wave matching frequency wm to equal wave frequency
corresponding to a resonant frequency of encounter w,, occurs at relatively low speeds. Let us
consider the behaviour near this condition for the particular waterlines given by o = 1 and
a = 0.5,

Referring to figures 2 and 3 we see that in both cases, in the region of the wave frequency @m,
the function fi is relatively small. For the ideal undamped beam developed here, the smallness of
J&would beirrelevant at the resonant condition we are examining, since the magnification would
be infinite, and the contribution of the other term fiV negligible. But for a real situation this is not
the case. In fact the damping due to wave-making at these low frequencies is so high that magni-
fication factors greater than 2.5 are uncommon. Hence the relative magnitudes of f* and fV are
highly significant. It appears that for the cases shown in figures 2 and 3, with this high intensity
of damping, the resonant contribution in this range is quite small. If this result is general, it seems
that, within the limits of our assumptions, at the condition in which ship—wave matching and
resonant encounter occur simultaneously, the resonant encounter contribution is not large. It
will also be small in the immediate vicinity of this resonant condition. If w, is slightly larger than
®m, this observation will also apply down to zero ship speeds: the resonant encounter contribution
will still be small.

At higher speeds, the resonant encounter frequency would correspond to a wave frequency
considerably lower than wn. In this range fi is seen to be of the same order as f;V. This suggests
that the resonant encounter contribution would now become of comparable magnitude to the
quasistatic contribution, gaining in significance with further increase in ship speed.

It is instructive to consider an illustration of this behaviour. Without suggesting that the
following in any way represents the actual quantitative role of damping due to surface wave
generation, we may nevertheless obtain therefrom an indication of the significance of damping
which is associated with magnification factors of about 2. We neglect entirely the non-dissipative
damping introduced as coupling between the two lowest modes, when the ship is under way.
Instead of the expression given in (2.15) for the amplitude of amidship bending moment,
consider the quantity

M@0
pgboPa

W (kD) + - wiw} (kD) I

— W3WF + 2inwe/wy
By adding the imaginary term to the denominator, we have introduced damping in a manner
analogous to the introduction of viscous damping into a one degree of freedom spring-mass system.
The damping factor is given by 5. The modulus of the above complex quantity may be evaluated
to give

M(3l) _ [{( 1 — w3wd) o + (0G]w§) fo'} + 49*(we]wf) (fo‘VV]*. (2.16)

pgbyl?a (1 - 0ifwf)? + 49*wy v

For the purposes of illustrating the influence of damping, this quantity is plotted in figure 4 for
the waterline given by & = 1, with damping factor y = 0.2. The latter corresponds to a magnifica-
tion factor of 2.5. The abscissa of figure 4 is the ratio //4, and the curves are for a ship whose
natural frequency in heave w, is about 129, higher than the ship-wave matching frequency.
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 13

Each curve corresponds, as indicated, to a different ship speed, expressed in terms of ship Froude
number (¥7). The dependence arises since the ratio we/w, is related to ship speed. When the wave
frequency corresponding to resonant encounter equals 1.04wy, the resonant encounter contribu-
tion to the amidship bending moment is zero, since in that case (//4) = 1.43 and f§' = 0 (see
figure 2). For the ship described by figure 4 this corresponds to a Froude number of about 0.025.
In the region of this condition, that is to say for Froude numbers up to about 0.05, the influence of
ship speed on bending moment remains small. But for higher Froude numbers, /7 > 0.1 in this
case, the phenomenon of resonant encounter becomes important, and the maximum bending
moment increases rapidly as ship speed increases.

0.04]

M(31)|pgby Pa
o
2
]

1A

Freure 4. Non-dimensionalized low-frequency bending moment for beam of parabolic planform (« = 1.0)
with damping factor # = 0.2, at various Froude numbers.

The behaviour of the damped beam illustrated by figure 4 is characterized by the influence of
Froude number on the relative significance of ship—wave matching and resonant encounter in the
low-frequency range. However, the analysis leading to these predictions is based on an idealization
that may seem sufficiently far removed from reality to render useless any general conclusions that
might be drawn. Fortunately this does not appear to be the case. On the one hand there are sound
theoretical reasons why the quasistatic term is a fair approximation to the total low-frequency
bending moment, at low Froude numbers: a consistent perturbation expansion shows that in the
equation of motion of a slender body on a free surface, the inertia and damping terms are of
second order—hence the predominant contribution to the bending moment arises from the
hydrostatic term (Ogilvie 1969; Newman 1970). And, on the other hand, the type of behaviour
we have suggested is qualitatively in accordance with observed results, both from full-scale ships
and from model tests. The curves of figure 4 are not unlike those that have been measured for a
wide range of ship types, of which the literature is amply filled.

We find therefore that at least in the low-frequency range there is some correlation between our
very simple mathematical model and the behaviour of real ships. It is hoped that the proposed
modal analysis will give sound theoretical explanations of physical eflects that are observable
throughout the frequency range encountered in practice. There are of course several aspects
upon which we may hardly hope to touch in the first stage of development of this analysis, some
of which have been totally ignored in the past. One of these is the influence of distortions in the
lowest modes: while it is negligible for conventional ships, it may not be so for very long flexible
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14 R.E.D.BISHOP AND R.EATOCK TAYLOR

vessels. But fundamental to an analysis of the type suggested here must necessarily be considera-
tion of wave-excited response at higher frequencies. This is discussed in what follows, where the
simple theory is further developed for the case of a uniform beam.

2.5. The special case of a uniform beam

In the pursuit of a theoretical explanation of the behaviour of ships in waves, there are several
advantages to studying the phenomenon for a uniform beam. Not negligible is the fact that the
characteristic modes and frequencies of a uniform free—free beam are well known (see, for
example, Bishop & Johnson 1960), and the manner in which they are modified by buoyancy
forces may be easily calculated. But there is a further point: particularising from non-uniform to
uniform beam introduces a degeneracy into the bending moment expression, which simplifies the
low-frequency behaviour discussed previously. We have discussed the relative smallness of the
resonant contribution to the low-frequency bending moment, at least for certain ships at zero or
low speed. But for the uniform beam this contribution is identically zero. Hence consideration of
this special case will give a clear illustration of the ship-~wave matching phenomenon in the low-
frequency range.

It may be seen from (2.4) that the characteristic functions of the beam satisfy

d4¢r/dx4_ﬂg¢r =0, (2‘17)
. . _ MoF—pgh
where Lr = ~57

The free—free boundary conditions lead to

&g, L ‘
T = 0= e A x= 0, .. (2.18)

Apart from the modified definition of £,, (2.17) and (2.18) are identical to the equations and
boundary conditions for the modes of a free—free beam in vacuo. The characteristic functions are:

r=—1: ¢_y(x) = (23[) (x—}) with p_, =0
r=0: Po(x) =1 with Sy = (2.19)
r=1,2,...: §,(x) = cosh f.x +cos ff,x — A (sinh B, x +sin f,x)

_cosh B,l—cos f3,1
"7 sinh B, —sin g,/

where

and g, is given by
cos B,lcosh .l = 1.

The natural frequencies are given by

Wty = 0f = pgblu,
wi =3+ EIfip  (r=1,2,..).

Whereas the frequencies depend on the added mass and buoyancy, the characteristic functions
are identical to those for a uniform beam ¢n vacuo. In particular, the lowest two (r = —1,0)
correspond to rigid body motions of the beam. Hence the simple uniform beam has two special
properties not generally possessed by the non-uniform floating beam: the lowest two modes are
free of distortion, and the corresponding natural frequencies are equal. Therefore these modes
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 15

are associated with the indices r = — 1, 0, in order to distinguish them from all other modes. (The
association of 7 = 0 with the mode symmetric about the beam midpoint, and r = — 1 with the
antisymmetric mede, instead of vice-versa, is a fairly arbitrary choice. The present definitions
agree with those in Bishop et al. 1973.)
The resonant contribution in each of the lowest two modes is related to the quantity M in
(2.13), given by
Fy(kl, t) M(x)

MEKL %, 1) = a 224722 (5= —1,0),
Fi a0 = o IR )

x
where T(5) = [ (k= pgt) (o) (x= ) sy = I (3).
Since the lowest two modes of a uniform beam are distortion free, the curvatures ¢g(x) are zero
at all points. Hence M, and M} are zero.

This important conclusion may be deduced in another way. A,(x) is seen to be the bending
moment at the point x when the beam is oscillated at frequency o, in the sth mode on a flat sea.
Thus M,(x) is the bending moment due to heaving (s = 0) or pitching (s = — 1) at the appropriate
natural frequency in still water. It arises when the buoyancy force is not exactly opposed by the
inertia (D’Alembert) force at a section. The integrals of these quantities along the length of
the beam must of course balance each other, but for a non-uniform beam any lack of balance at
a section gives rise to a bending moment. Now for the uniform beam these quantities are in fact
balanced at every point: each section is identical, and the buoyancy exactly opposes the inertia.
Hence M, is zero (s = — 1, 0) for the uniform beam, and so therefore is the low-frequency resonant
contribution M}.

The total bending moment response of a uniform beam is thus given by

w QW= 0] 4y
M(x,t) = MW (kl,x,1) +T§1 3 _—)—%Mr-(kl, x,1).

For a rigid beam (and for a flexible beam at we = w,) the summation is identically zero. The
amplitude of wave-induced bending moment in a rigid uniform beam is exactly given by the
quasistatic term; in this case there is no dynamic effect at any frequency. But when account is
taken of the beam flexibility, resonant encounter becomes possible at frequencies near or above
,, the frequency of vibration in the two node mode.

Itisimportant to note why resonant encounter is important for the flexible uniform beam. The
amplitude of M} (r = 1,2, ...) is non-zero, except for certain values of 4/ as indicated in what
follows. Whereas in the lowest modes the hydrodynamic damping is sufficiently large to give a
small magnification factor at resonance, this is not the case in the higher modes. At the higher
frequencies, damping due to wave generation is small, if not negligible. The primary source of
energy dissipation is structural damping, and the magnification in the modes r = 1,2, ... is
relatively large.

For the flexible uniform beam the following conditions for large dynamic stresses may be
distinguished:

(i) Ship—wave matching, where the ship length /wave length ratio is such as to cause large
MW, but the encounter frequency is well below w;. '

(ii) Resonantencounter, for which the wave encounter frequency is close to a natural frequency
w, (r=1,2,...).
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16 R.E.D.BISHOP AND R. EATOCK TAYLOR

But the resonant encounter phenomenon is itself influenced by a degree of ship~wave matching,
determined by the variation of M with /.

These two conditions will be examined separately, the assumption being that at the frequency
at which one occurs the contribution of the other is negligible. The simultaneous occurrence of
these as independent phenomena in confused seas will be discussed subsequently. First we must
show how the operators MW and M vary with wavelength, and we will illustrate this by con-
sidering the bending moment amidships.

For the uniform beam the amplitude of MW is given by

| MY (KL, 31,0)|
pgbla

where o = 3£l. This is plotted in figure 5, where it is seen that the absolute maximum occurs for
aship length /wavelength ratio //4 = 1.11. This corresponds to a wave frequency o = 2.65,/(g/l).
Below this wave frequency MW decreases steadily to zero. Above this value, there is a series of
smaller relative maxima of |A/W|, the first corresponding to a frequency » = 3.88,/(g/l) and a
wavelength given by //4 = 2.40. This graph for the uniform beam is analogous to the graphs for
fo", in figures 2 and 3, for certain non-uniform beams. But in this case f§ is of course identically
zero for all values of £l.

0.04

~0.01

Ficure 5. Non-dimensionalized low-frequency bending moment function f§" for uniform beam at all speeds.

To illustrate the higher mode operators M (r = 1,2, ...) we shall here indicate the operator
MF appropriate to the two node mode. This is of the greatest significance for the resonant
encounter phenomenon since damping is generally smallest in this mode. The amidship value
is given by

_ B
MP (KL, 31, 8) = aly (K, 1) %f b1 (%) (31— 7o) dx,.
0

Using the definition of £, and the known mode shape of the uniform beam, we can easily find the
amplitude of this operator. The result is

| MIY (kL 31, 1)

pgbla = S (kD)
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 17

where the function fi is derived in appendix C. This is plotted in figure 6. The wave frequencies
corresponding to resonant encounter in the two node mode are associated with wavelengths
typically very much smaller than ship length. Although £ has been plotted for values only up to
/A4 = 10, its behaviour at yet shorter wavelengths is clear: the function fluctuates rapidly, passing
through zero at approximately integer values of //4, and the peaks diminish successively.
We shall find, however, that the significance of the fluctuations is reduced in a real wave system,
when account is taken of slight departures from two-dimensionality of approaching waves.

004
002
=L /\
/\ TN N
O T ) T ) T
B v 4\/ N4 a~—" o 4
-0.02

Ficure 6. Non-dimensionalized high-frequency bending moment function
Si* for uniform beam. o = 3kl = wi[A.

3. AMIDSHIP BENDING MOMENTS IN A UNIFORM BEAM IN CONFUSED SEAS

3.1. The sea spectrum

The operators we have thus far obtained give the amidship bending moment in a uniform beam
in progressive sinusoidal waves in deep water. We now use these operators to find mean square
bending moments in confused seas, obtaining results both for a long-crested sea and for particular
cases of short-crested seas.

The Fourth International Ship Structures Congress (I.S.S.C. 1970) recommended that bending
moments be calculated on the basis of a wave spectrum of the form

S(w) = (A[wd) e~Blu, (3.1)

where 4 and B are functions both of observed wave height and of observed wave period. However,
in order to reduce the number of variables in this basic study, it appeared more convenient to use
the International Towing Tank Conference one parameter spectrum (I.T.T.C. 1969). The latter
is written in the same form as above, but 4 and B are functions only of significant wave height &,
(in metres). In fact

A = 8.10 x 10-3g2
g } (5.2)

B = 3.11/i8,

where g is the gravitational constant in the appropriate units. The form of the resulting wave
spectrum is shown in figure 7, where S(w) is plotted for a number of values of 4;.
To include the effect of directional spread of wave energy, the I.S.S.C. and I.T.T.C. recom-

mend use of the spectrum
S$*(w,0) = S(w) C, cos™0, (3.3)

3 Vol. 275. A.
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18 R.E.D.BISHOP AND R. EATOCK TAYLOR

where 0 is the angle between the direction of a wave component and the predominant wave
direction. C, is a normalizing constant. The exponent z is commonly taken as 2 or 4, for which

C, = 2w, C,=8/3m.

The higher the value of n, the narrower the directional spread implied. It is suggested in the
report (1.S.S.C. 1970) that, to err on the safe side in estimating maximum bending moments, it is
advisable to use a high value of z, or to omit the directional spread altogether. Results shown here
for the uniform beam, however, suggest that mean square bending moments may in some cases
be increased by allowing for spread of wave energy through use of these formulae.

201

S(w)[m2s

|
0 05 10

w[rad st

Ticure 7. Wave spectra for various sea states.

3.2. Low-frequency wave bending moment response
The low-frequency amidship bending moment response operator for the uniform beam (or
‘uniform ship’) in head seas is

| MY (K, 34,8)]
peblia

1—coso sino
=) = e

where o = }kl = w?lfg.

But for sinusoidal waves having wavenumber £ approaching at an angle 0 to the axis of the ship
(which is the x-axis), the wave depression along the ship is given by

{(x,t) = asin (wet—kxcosb).
Therefore for waves from direction 6, the above operator should be used with

o = Yklcos 0 = (w?l[g) cos 0.
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SYMMETRIC MOTIONS AND WAVE-INDUCED STRESS 19

The bending moment operator f" is thena function of both wave frequency w and wave direction
6. It does not, however, depend on the encounter frequency, and the low-frequency bending
moments in the uniform ship are independent of the speed of the ship.

If this operator is combined with the wave spectrum in the usual manner, we may obtain a
mean square bending moment coefficient, the prerequisite to determining long-term expected
maximum stresses. It is defined by

Mg =1 f ? f T Y28(w) C, cos™ 0dOdw
l 0 _.vé_-n-

-1 f “s(0) [Cn f T2 cosnd do] dw.

__%—n-
Note that My; is dimensionless, since $(w) has dimensions of (length?x time) and f3V is non-
dimensional. The physical bending moment is given by pghl3My;. We may write

My =7 f 0°° S(0) [AY (@, 7)]? do. (3.4)

The quantity A" incorporates the directionality of the wave spectrum. As z — co, the wave
spectrum tends to the unidirectional case, and &y’ — | foV].

The influence of directional spread may be examined by plotting 4" against ship length [wave-
length ratio (or wave frequency) for different values of the exponent z. This is shown in figure 8,
which includes the cases # = 2, 4, co. The integral was evaluated by Simpson’s rule, using step
sizes of 1°. The form of the primary peak near ///l = 1is seen to be reasonably constant, whether
or not directional spread is allowed for. However, the secondary peaks which we have found for
a long-crested sea (n = 00) are virtually eliminated in a widely spread sea (n = 2).

0.04~

(@, n)

W
hy
o
=
T

iA

Ficure 8. Low-frequency bending moment function Ay for various
wave energy directional spread exponents 7.

We may understand the reason for this latter behaviour by considering what happens at
[/A = 2 (0 = 2m), which in a unidirectional head sea gives fo"V = 0 (figure 5). Thus ' = 0 for
w = 4/(41g[l). In a directional sea this same value of w corresponds to values of o ranging from 27
to 0, as 0 varies from 0 (ahead) to + 3w (abeam). Between these limits on o, f3V is positive, and
consequently 4y’ (w,n) has a non-zero value for all non-zero o if # is finite. The peak to trough

3-2
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20 R.E.D.BISHOP AND R.EATOCK TAYLOR

fluctuations are reduced as 7 is decreased, since the behaviour away from ¢ = 0 then increases in
importance.

The dependence of 4}’ upon the law chosen to represent directional spread in turn influences
the value calculated for the quantity Mvy. This has been computed for a uniform ship of length
308 m in waves of significant height 5m, an example used subsequently in the investigation of
high-frequency response. The integration over the frequency range w was performed by Simpson’s
rule, truncated at w = 1.285rad/s. Above this value of w, the integrand is less than 0.025 %, of
its maximum value, and its contribution to My is negligible. The results indicate that the
assumption of a unidirectional sealeads to an underestimate of about 10 %, for the amidship bending
moment in the uniform ship, as compared with the value obtained using a cos? wave energy
distribution.

The magnitude of My is strongly dependent on sea state, as measured by significant wave
height. This is due to two effects. An increase in £y causes an increase in §(w) over the whole range
of @ (as shown in figure 7), which in turn must increase Myy. But a change in 4y also shifts the
frequency about which maximum wave energy is centred: this frequency decreases as significant
wave height increases. Hence the magnitude of 4 determines how near the peak in () is to the
peak in 4" (w,n), hence also influencing My, In extremely heavy seas, the maximum energy is
concentrated in the region of such large wavelengths that the value of 43" (w, z) is relatively small.

ar

*
W

104

| 1
0 002 004
hyll

Fioure 9. Variation of dimensionless r.m.s. low-frequency bending moment with sea state.

Thus there is a gradual levelling off of M at high values of ;. This behaviour is illustrated in
figure 9, which is a plot of M3y against the dimensionless wave height (ky/l), computed using
n = 2. The figure gives a single curve valid for any geometry of the uniform ship, as we would
expect from consideration of the definition of My in (3.4), and the dependence of $(w) on hy given
by (3.1) and (8.2). The quantity A" in (3.4) is a function of o, hence of w?. The equation for M3
may therefore be written

3.11

Mg = f : (Tf/‘z’)“ﬁ [exp (251-12—) (7%)2] (B (w1, n)]2 i do.

Transforming the integration variable from o/l to ', we see that the functional relationship
between My and (ky/l) is independent of the length of the uniform ship.

The graph in figure 9 gives the dependence of low-frequency bending moment on sea state, for
a uniform ship of any length or breadth. However, the compact representation of the information
in this figure to some extent conceals its practical significance. If My were plotted against hy,
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rather than the dimensionless wave height, the importance of ship size would be better illustrated.
We should find that, for a given sea state, My decreases as ship length / increases. The resulting
graphs would be analogous to those of Little & Lewis (1971), in which were plotted the variation
of r.m.s. wave bending moment coefficients (related to Myy) with Beaufort number. These were
deduced from extensive measurements on five ships in service conditions, but they show very
similar characteristics to those we have derived from the simple theoretical approach.

3.3. High-frequency wave-excited vibratory bending moment response

The high-frequency amidship bending moment for the uniform beam in head seas is

— g

§ oA M (kL 340,

For a real ship only the lowest mode (r = 1) is likely to be of great significance, so it is reasonable
to illustrate the high-frequency behaviour by considering the amplitude of the first term in the
above series. Thus we consider

o

— w2
2—a)§|M (kl, $,1)| —pnga 2f H(o)

where fi! is the quantity plotted in figure 6.

This expression has been derived neglecting all damping. But in order to derive mean square
bending moments analogous to those obtained for the low-frequency contribution (which is
considered as being independent of the term now under discussion), we must make some assump-
tion about damping. It scems reasonable to assume that at these higher frequencies dissipative
damping due to hydrodynamic effects is negligible. Only structural damping is significant, and
in the calculations which follow this is assumed to limit the reasonant magnification factor in the
two node mode to 100. This is of the order of measurements made on full-scale welded hulls
(Aertssen & de Lembre 1971), and corresponds to a damping factor 4 = 0.005.

The above expression for bending moment operator is therefore modified to allow for damping,
by using

Wi — W}

Wi[ (1= (wg/w))? + 4n*(wgfw]) ]}

in place of the factor (02— wd)[(w}— w2). As before, for waves from a direction

Hy(we) =

(3.5)

o = (}$w?g) cos 0.
Thus (o) is a function of w and 6.
The corresponding mean square bending moment coefficient is

Mi? = lzf J‘ [Hy(0e) 12[fE(0)]28* (0w, 6) df dw.
This may be rewritten by relating the encounter frequency we and the wave frequency w. We have
we = 0[1+ (Uw/g) cos ],

where U is the forward speed of the ship. The solution of this last equation, for waves from

ahead, is
_ [1-4we(Ulg) cos ]2 — 1
- 2(Ulg) cos 0 )
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L 2) cos Ot — 1)
Hence o= Uzcosﬁ{[l +4we(Ulg) cos 0]2 — 132,

Mapping wave frequency o into encounter frequency we in the integral, and using

S$*(w,0) 8w d0 = §*(we, ) 8w 30,

we have Mg =7 f 0°° [Hl(we)]z{ f :T[ S (06, 0)]25* (w6, 0) dﬁ} doe.

_ S$*(w, 0) _ S(w) C, cos™O
T 1+20(U[g)cos 0 [1+4we(Ulg) cos 0%

Now S* (0, 0) (3.6)

Since, for constant encounter frequency we, S(w) may be expressed as a function of 0, the mean

square bending moment may be evaluated from

M= o, U2 U000 (o o 090 doe

This may formally be written

1> ;
My =7, f (a8, (0, U) do. (3.7)

The form of M{; is fundamentally different from My, reflecting the different attributes of low-
frequencyship—wave matching and high-frequency resonant encounter. Notonlyis the magnifica-
tion factor H, (we) introduced, but the influence of U is also now strongly apparent.

It is useful to consider first the case of zero ship speed in order to analyse the influence
of directional spread exponent z. For this case we = w, and we have

My =7, f 0°° [H, ()12 S(0) {Cn f :T[ (0, 0)] cos™ 0d0} do

= 5[ UL0)1°S(0) [ (0,n)1*do.

As for the low-frequency case, a quantity (k) has been defined which tends to | f;| as n — oo. It is
plotted against ship length /wavelength ratio in figure 10, for the cases n = 2, 4, 16, co0. Since for
the high frequencies appropriate to resonant encounter the wavelength is considerably shorter
than the length of any ship, we are only concerned with the characteristics of 4, for values of I/A
considerably greater than unity. Figure 10 covers the range near /[/4 = 40, which applies to the
particular example considered below.

Infigure 10itis striking how small is the change in £, as the exponent nis increased from 4 to 16.
In fact for the curve of &, to have fluctuations approaching the same order as those of | f;], » must
be very large indeed, according to the computations made while obtaining the results of figure 10.
This may probably be explained as follows. The distance between successive maxima in the | f; |
curve corresponds in this range to a change of o of about 2 9,. However, o is proportional to
cos 0, so that a 1 9, change in o corresponds to approximately a 1° angle between ship heading
and wave direction. For there to be large fluctuations in 4, the multiplier cos” ¢ must fall from
a maximum to almost zero in half the distance between the peaks of | f;|; that is to say, as 0
increases from 0 to 1°. This implies very large values of n. Its practical significance is that a wave
system would have to possess negligible directional harmonics to lead to an operator even
approaching the ideal two-dimensional result based on |f;|. In a real case it seems likely that
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small directional components will lead to functions resembling #%,, as plotted in figure 10 for
n = 4 or 16, much more closely than | f;|. This is not to say, however, that the fluctuations are
virtually eliminated by these directional components: indeed they remain highly significant,
even though relatively small compared with the fluctuations in the operator |f;| for the uni-
directional case.

0.0012

0.0008

Iy (o, n)

0.0004

(=)

40 42
A

Figure 10. High-frequency bending moment function &, for various
wave energy directional spread exponents n.

When U = 0, it is not possible to define a quantity analogous to %, and the significance of
directional spread may not be illustrated in the same manner. It seems reasonable to expect that
its influence on Mj; will not differ qualitatively from what we have described. In subsequent
calculations, use is made of the cos*law (n = 2), for zero and for non-zero ship speeds.

The characteristics of the high-frequency bending moment, and its dependence on speed and
sea state, may be investigated by making calculations for the example uniform ship to which we
referred previously. It is of length 308 m, having natural frequencies w, = 0.57rad/s and
w, = 2.86rad/s. These values of / and w are chosen for convenience since they correspond to the
properties of a 200 000 t (d.wt.) tanker analysed by Goodman (1971) — w, was not specified, but the
above value is considered a reasonable estimate, and its influence on the results computed here is
only secondary. Where possible, the results are generalized by expressing them in non-dimensional
form, as in figure 9 for the low-frequency bending moment. However, because of the appearance
of w; and w, in the high-frequency expressions, we must introduce two new dimensionless

parameters. We choose
w3l D)
1 2g J wl J

and M may then be calculated for specific sets of these parameters. For the uniform ship which
approximates to the 200 000t (d.wt.) tanker, the relevant values are

oy =128, 7=0.2 (ship T2).
We have also made some calculations for two other sets of values:
oy, =289, 7=0.2 (shipTi),

oy =66, 7=0.2 (shipT3).
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24 R.E.D.BISHOP AND R.EATOCK TAYLOR

Each ship type (e.g. T1) represents a family of uniform ships whose lengths and frequencies
generate the appropriate dimensionless parameters. Examples of ships T1 and T3 might have

the properties
Ti:l=215m, o,=5.14radfs, w,= 1.03 rad/s;

T3:/=400m, o, = 1.80radfs, w,= 0.36rad/s.

The natural frequency o, for T3 has deliberately been chosen on the low side, relative to conven-
tional ship sizing, to illustrate the characteristics of a relatively flexible ship.

w 04
B
=
S
g
S 0.2
ol—} 1 1 |
i 0.95 1.00 1.05
wel 21
Ficure 11, Transformed wave spectra S (w,, U) for speeds corresponding to Fr = 0.10 and 0.11.
———, Calculated values; ~——, ‘averaged’ values.
1.0+~
£l
)
- 0.5
S Fr=015
2
2 \
——— 010
\._‘N——\
005
l | : | 1 ‘
Ul 0.95 1.00 1.05

o, el Wy

Ficure 12. Averaged transformed wave spectra at various Froude numbers,

The results of the computations are shown in figures 11 to 15. In figure 11 the function S, (we, U),
introduced in (3.7), is plotted for ship T2 for two relatively close speeds, which correspond
respectively to Fr=0.10 and 0.11. The abscissa has been non-dimensionalized with
respect to the natural frequency w,. The figure refers to a sea state represented by the non-
dimensional wave height (#;//) = 0.01623, which for the 308 m ship is equivalent to &y = 5m.
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An examination of figure 11 suggests that the r = 0.11 curve is approximately equivalent to the
Fr = 0.10 curve shifted to the right, and increased by a small factor. But because of the fluctuations
of §(we, U), this shift causes a marked alteration to its value at the resonant condition we = ;.

Hence the amidship bending moment response, directly related to S, (we, U), will be appreciably
modified by relatively small changes in the forward speed of this theoretical model. For real ships
the significance of this phenomenon is an open question. In high waves a ship would probably
be unable to maintain constant speed within the accuracy implied by a practical realization of
these fluctuations. But in moderate seas, if significant high-frequency stresses occur, it seems
possible that a small change in ship speed could cause an appreciable alteration in stress level.

10-3[H, (0)]?

ol ! |
0H 09 10 11
(‘)e/ (01

Ficure 13. Magnification [H,(w,)]? for dampling factor = 0.005.

08 08f” T3 (01-66)
*1d * i
=~ 04 = 04
2 = T2 (67=125)
T1 (;=289)
| | : | | J
0 0.1 0.2 0 002 004 006
Fr hy[l
Ficure 14. Variation of dimensionless Ficure 15. Variation of dimensionless
rams.  high-frequency  bending ram.s.  high-frequency bending
moment with Froude number, for moment with sea state, at
ship type T2. hy[l = 0.01623. Fr = 0.10, for various ship types.

Of great importance is the general trend superimposed on this fluctuating behaviour. As well
as the shift to the right as Fr increases, there is an overall increase in the magnitude of S (we, U).
This is because a given encounter frequency corresponds at higher speeds to lower wave
frequencies, hence to higher wave energies. The increase is illustrated by the dashed lines in
figure 11, drawn through ‘average’ values of successive maxima and minima, for the two cases

4 Vol. 275. A,
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26 R.E.D.BISHOP AND R.EATOCK TAYLOR

Fr=0.10and Fr = 0.11. (The ‘averages’ were computed on the basis of aleast squares polynomial
fit. The choice of polynomial was somewhat arbitrary, but the results are useful for illustrative
purposes.) A family of corresponding average curves is shown in figure 12 for ship T2, for values
of Fr from 0.05 to 0.15. At a given encounter frequency, the increase of S;(we, U) with Fr is
dramatic.

Inorder to obtain the mean square high-frequency bending moment, given by (8.7), we require
the factor [H,(we)]2 This is plotted in figure 13 for the example uniform ships (for which
7 = wy/w, = 0.2). The damping factor is assumed to be = 0.005. Such relatively light damping
leads to a very narrow band response in the vicinity of we/w; = 1. Comparison of figures 11 and 13
shows that the bandwidth of H,(w.) is somewhat smaller than the frequency difference between
successive maxima and minima of the curves for Sy (we, U). Hence the process of integrating will
not smooth out the fluctuations: the value of M will be critically dependent on U. A curve of
M7 against Fr would display significant fluctuations superimposed upon a value steadily
increasing with F7.

It may be that meaningful results are obtained by using the average functions plotted in
figure 12 in place of S, (we, U) in the integral. Let such a function be 87 (we, U). It varies very little
within the bandwidth of H,(w.). It is a reasonable approximation to take

St U) [
Mﬁzz 1(‘”[12’ )fo [Hl(&)e)]gda)e
S1(wy, U) Wi T

- (-8 oy
(See for example the discussion by Thomson (1965) of lightly damped systems subject to broad
band excitation.) In this way we may obtain a good approximation to the mean square response,
without having to perform the integration in the frequency domain. Values of M} obtained from
this approximation are plotted for different ship Froude numbers in figure 14. This figure repre-
sents results for ship T2 in a seaway given by 4/l = 0.01623. It illustrates most clearly the rapid
rise in amidship vibratory bending moment as forward speed of the ship increases.

The dependence of M upon sea state is of particular interest. This may readily be found by
computing 87(w,, U) for a given value of /r and a series of values of (%;//): figure 15 shows the
results for ships T1, T2 and T3 at Fr = 0.1. We see that, apart from the trivial range of very
small (ky/l) and insignificant wave excitation, M is almost independent of sea state, for a given
ship. This may also be seen from figure 7, which indicates very little change in wave energy
content at the higher frequencies, as % increases. It follows that if wave-excited vibratory
moments are at all significant, for a given ship at a given speed, they attain significance in
relatively light seas. If valid, this is a most important conclusion. It indicates contrasting charac-
teristics at low and high frequencies. And it suggests that the rapid fluctuations in bending-
moment amplitude, superimposed upon the average values which increase with ship’s speed, may
indeed be relevant to the case of a real ship, if the resulting stresses can reach significant values in
moderate seas. Consequently a slight change in forward speed (cither an increase or a decrease)
may be sufficient to reducc considerably the high-frequency stresses. This has in fact been
observed during full-scale measurements of a Great Lakes ore carrier (Hoffman 1972).

To assess the relative significance of wave vibration stresses, compared with low-frequency
wave bending stresses, we examine values of My} in moderate seas for the three families of ships
T1, T2 and T3. Figure 15 shows that wave vibration stresscs increase rapidly as o, decreases; in
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other words, these stresses are more likely to be significant for large and more flexible ships than
for small and stiffer ships. Now figure 14 gives the dependence of M7; on Fr for ship T2. It was
computed for seas given by Ayl = 0.01623, but figure 15 indicates that the results are approxi-
mately valid for all sea states above this. We may deduce from these graphs that in moderate seas
the ship T'3 need only proceed at a speed equivalent to Fr = 0.10 to achieve a value of M} as high
as that pertaining to ship T2 at Fr = 0.20. This is a striking result when compared with the
characteristics of the low-frequency wave bending moment. M5y is the same for the two ships in
corresponding seas, at all speeds. Furthermore, comparison of figures 15 and 9 demonstrates that
the value of Mj; for ship T3 at Fr = 0.10 is approximately equal to My in seas given by
hyl = 0.0127; for a 400 m ship this is equivalent to a significant wave height of about 5m. These
results illustrate how wave-excited vibratory stresses, in very large relatively flexible ships, may
be of comparable magnitudes to normal wave stresses.

4. CONCLUSIONS BASED ON THE SIMPLE BEAM ANALYSIS
4.1 The mechanism of wave excitation

In order to illustrate the development of the simple beam theoretical model, the phenomenon
of wave excitation has been examined in some detail. Within the limitations of the theory,
discussed in the following section, this leads to a number of observations about the behaviour of
a flexible ship in waves.

When placed in a progressive sinusoidal wave approaching from ahead, this ship will respond
in a manner determined by the frequency of the oncoming waves. Broadly speaking, there are
two independent response mechanisms of significance, corresponding to low and high wave
frequencies. Let us first consider what may be described as the ¢ low ’-frequency response. It is
excited by waves at frequencies corresponding to wavelengths of the same order as the ship
length. The frequency of encounter with such waves is often of the same order as the lowest two
resonant frequencies of the ship, corresponding to heave and pitch.t But because of very heavy
damping, which results from waves generated by the vertical motions of the ship, magnification
of the response at either resonant frequency is small. The behaviour of both motions and stresses
is dominated by a phenomenon which has been termed ship—wave matching.

This matching occurs at a certain wave frequency; it corresponds to a wavelength bearing a
particular relation to the ship length such that maximum excitation occurs. Hence ship-wave
matching is independent of the speed of the ship. The vertical motions of the ship depend on both
the degree of ship-wave matching and, to a lesser extent, on the proximity to the condition of
resonant encounter (at which encounter frequency coincides with heave or pitch natural
frequency). Generally speaking the stresscs also depend on these phenomena; but the contribution
to the stresses due to resonant encounter is often small at low ship speeds, and is identically zero
for the special case of the ‘uniform’ ship. Hence at low speeds these stresses are not strongly
dependent on Froude number.

Consider now the ship’s response to waves in the ‘high ’-frequency range. Such waves are
typically much shorter than the ship’s length, and their encounter frequencies are of the order of,
or higher than, the natural frequency of the lowest symmetric vibration mode (the two-node
mode). Because damping at these frequencies is very light, the response is dominated by the

1 Note that for a non-uniform flexible ship, neither of these two modes is distortion free.
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degree of proximity to resonant encounter in the two node mode (or higher modes). The simple
theory indicates a significant dependence on the precise value of ship length /[wavelength ratio
(ship-wave matching in the ‘high’-frequency range), but reasons have been suggested why this
would be less important for a real ship in waves. It has been shown that the frequency of the
oncoming waves does not therefore greatly influence the magnitude of the resulting ‘high’-
frequency stresses in a direct manner. Rather it is the encounter frequency that is significant.
Thus for a given wave height these stresses are strongly dependent on Froude number.

Although they will not be discussed here further, we must make mention of other high-
frequency responses in waves, induced by a somewhat different mechanism. They may be
thought of as hybrids of the low- and high-frequency phenomena we have described. For
example, when a ship is excited into large pitching motions by low-frequency regular waves,
through ship—wave matching, its bow may periodically emerge from the water. Its return later
in the same cycle is accompanied by a sudden impulse transmitted from the bow along the hull
length, which in turn excites vibrationsin the two-node and higher modes. This is the phenomenon
of slamming. Somewhat similar is the effect of vibratory forces which may be induced in a
pitching or heaving ship, even without its bottom leaving the free surface: the forces are related
to the rates of change of fluid momentum which arise when the hull is not wall-sided. It seems
likely that the wave-excited vibrations observed in a 47000t (d.wt.) tanker (Bell & Taylor 1968)
were a manifestation of this latter phenomenon, often called whipping. Both slamming and
whipping, although excited by a seaway which is assumed to be a stationary random process, are
non-stationary processes (Apostolov 1969).

The high-frequency wave-excited response with which we are concerned, the phenomenon
which has been called springing, is a stationary phenomenon in a random sea. It has been
analysed by Goodman (1971) and van Gunsteren (1970). The results given by these authors refer
to the springing phenomenon in a unidirectional seaway. We have seen, however, that such
theoretical results are very sensitive to ship’s speed. Although the trend is for wave-excited
vibratory stresses to increase rapidly with forward speed, the increase is not monotonic: small
increases in speed may lead to dramatically lower stresses, if a unidirectional sea is assumed.
Incorporation into the theory of minimal directional spread of wave energy reduces the fluctu-
ating nature of the dependence of stress on speed, but does not eliminate this characteristic. A full
explanation of the behaviour of real ships must probably await a theory which takes into account
the variations in forward speed due to surging in waves.

The influence of directional wave energy spread on low-frequency wave bending moments
has also been illustrated by the simple theory developed herein. It appears that by considering
only the case of unidirectional seas, the analyst may underestimate the long-term wave-induced
stresses.

For a ship in head seas, we may summarize the differences between the low- and high-
frequency stress responses, which have been derived from the simple beam mathematical model,
as follows. Low-frequency stresses are, at least at low speeds, almost independent of ship Froude
number; in general they increase rapidly as sea state deteriorates. High-frequency springing
stresses, if at all important, will be evident in moderate seas and will not be significantly higher
in much heavier seas. They can be dramatically reduced by making a considerable reduction in
ship speed: but it is also possible that in moderate seas they may be reduced considerably by only a
slightincrease or decrease in speed. In a random seaway the low- and high-frequency phenomena
occur simultaneously. Estimates of probable maximum stresses must be based on their combined
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effects, assuming each to be independent and Gaussian distributed (Miles 1970). We have shown
that it is reasonable to expect the relative contribution of low-frequency stresses, for a reference
sea state, to decrease, and that of high-frequency stresses to increase, as ships become larger.

4.2. The need for an improved model

The model has proved useful in discussing the qualitative behaviour of ships in head seas, with
particular reference to factors influencing amidship bending moments and stresses. Clearly this
type of analysis in terms of modal responses is also relevant to calculations of hull vibration
amplitudes due to propeller excitation or other mechanical exciting forces, at least in the
frequency range below that at which the hull ceases to act as a beam with rigid cross-sections.

Our analysis has, for clarity, neglected the effects of shear deformation and rotary inertia, but
inclusion of these would not alter the general behaviour which we have described. The existence
of distortions in the lowest modes of a ship has been noted, but not considered in detail. All
distortions are limited by structural damping, which has been treated in only a rudimentary
manner. However, it seems unlikely that a sophisticated consideration of this factor would
appreciably modify the observations set out above. Far more serious is the superficial manner in
which hydrodynamic damping has been introduced.

The nature of the hydrodynamic forces has been drastically simplified in this paper, in an
attempt to obtain a clearer understanding of the structural behaviour of a ship in waves. It is this
simplification which imposes the most severe limitations on the application of these ideas to
obtain quantitative results for real ships. To improve the theory we must examine the hydro-
dynamic boundary value problem, attempting to take account of the three-dimensional nature
of the flow, and the influence of the free surface. The problem is currently under consideration.

APPENDIX A. IDENTITIES REQUIRED IN DERIVATION OF THE BENDING
MOMENT M (x,{) IN THE SIMPLE BEAM
Consider the quantity

1,3) = [ 1 (10) 02 = b)) (30) (=) e

Since the characteristic functions ¢,(x) satisfy

o (B15%) + pebs,— o, = o

it may be written
— d? d?¢,
M, (x) =f I (EI d¢ ) (% — %) d,.

This may be integrated by parts to give

= [ 058 - [ 4]

Now the boundary conditions at the end x, = 0 of the non-uniform free-free beam are

d’4,\ _ d’¢, _
(Eldo) - I at m=o.

dx,
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Hence we obtain the first identity
M, (x) = EI(x) §1(2). (A1)

Next consider the series representation

pgb(#)sin (0ot —kx) = j'(x) 3 Jo(kL 1) (),

r=—

where the coefficients f,(kl,t) are as yet unknown. They may be found by multiplying the
equation by ¢,(x), integrating over the range 0 < x < /, and using the orthogonality property of
the functions ¢,(x). We obtain

f:pgb(x) ¢, (x) sin (wet —kx) dx = fu(kl,8) i, (r =—1,0,1,2,...).

But the lefi-hand side of the above is F,(kl, £), and we have thus found that

pgb(x) sin (wet —kx) = u'(x) % F, (Kl t)

brid
r=—1 [y

(%) (A2)

This is the second identity we require to obtain the bending moment.

APPENDIX B. AMIDSHIP WAVE BENDING MOMENTS IN A
SYMMETRIC RIGID BEAM

Advantage may profitably be taken of the condition of symmetry in this special case by
transforming the origin to the amidship section, and using the non-dimensional coordinate
& = (x/l). We consider the case for which

' (§) = constant,
pgb(§) = pgbo(1—4af?).

Symmetry arguments show that, of the two rigid body modes, only the mode symmetric about the
new origin contributes to the amidship bending moment. Let this be the mode

$o(6) = 1.
Hence the bending moment may be obtained from (2.12) in the form
w2 Fy M,

Wty (0§ — )

(30 = (a [ peb(e) [cos 20— 7o) (~g) d+a

}sin (wet—0),
070

where we have defined o = }£/ and

Fo=1[" pab® cos 20t
- 0
3= B[ 10 o —pgh(£)) (~9) .

Now since the shear force at the end § = } is zero, when the beam oscillates freely in the 0 mode
at frequency o, it is clear that

3
{1 (@) o —peb(e ag = .

}
Hence R = 1 f Pab(e)dE
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0
If we define 4, = f , (1= 48 cos 20€ £

_l 1+6a si110'+1—c050' +gc sin0+3cos0'
T4 2]\ o o2 4\ o o )’

3
and 4, = f . (1—4ak?) cos2o‘§d§

=(1-0)—

sin T
(sm o—0Ccoso),

then we obtain

M3, 1) =pgb012a{[ 4,434, 2“ = ]+%~A2

o

1y w2 —
1—-4a wj

sin (wet — o).
0)%} ( e )
This may be written more conveniently as

M3t 2 .
Pg(b%(;ﬂa) - [f"w(kl) +w%ai ot "L(kl)] sin (0ot =),

where /¥ and f{ have been defined accordingly.

ArPENDIX C. AMIDSHIP WAVE-EXCITED VIBRATORY BENDING
MOMENT IN MODE 1 OF A UNIFORM BEAM

We wish to find an expression for f; (o) given by
peblPaf, (o) = | MP'(kL, §,1)|,

where MP(H, 3,1) = aFy (K, 1) ] f S halre) (30 =) d,

and o = 1kl. The integral may most simply be found using the first identity obtained in
appendix A. For the uniform beam in mode 1 this becomes

_ i
T = (wot=peh) [ dalw) (4=20) do = EIGE(3).
Hence [t (a1 ax, = sza0 1.

The quantities ¢’ and F; may conveniently be evaluated using a coordinate system with origin at
q 1 pmay Yy g Y g

the centre of the beam, as in appendix B. In terms of the non-dimensional coordinate £, the
characteristic function for mode 1 is

cosh 2y§  cos 2yE
+
coshy cosy

$1(30) 12[ L __1_]

V'h :15/_2 coshy cosy

_ 1
and F(kl, ) = peb f (%) sin (el — kx) d
0

}
— pgbl f , [“gf}:ﬁf + C‘C’fo] cos 20£ dEsin wet

where y = 44,1. Hence

o2
= pgbl[ — i 5 (osino —vy tany cos 0')] sinwet.
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Combining these results we find

Silo) = o 1 1)0"0'—t cos o)
1 ~ 2y%(ot—y%) \coshy cosy (7sino—ytany cos o).
REFERENCES

Aertssen, G. & de Lembre, R. 1971 A survey of vibration damping factors found from slamming experiments on
four ships. Trans. N.E. Cst Instn Engrs Shipbuilders 87, 83-86.

Apostolov, V. S. 1969 Effect of the form of the hull extremities on the magnitude of hydrodynamic forces causing
overall vibration. Trans. Leningrad Shipbuilding Inst. no. 66. (BSRA Translation no. 3476).

Bell, A. O. & Taylor, K. V. 1968 Wave-excited hull vibration measurements on a 47,000 tons deadweight tanker.
Shipp. Wid 161, 412-420.

Bishop, R. E. D. 1971 On the strength of large ships in heavy seas. S. Afr. Mech. Engr. December, 338-353.

Bishop, R. E. D., Eatock Taylor, R. & Jackson, K. L. 1973 On the structural dynamics of ship hulls in waves.
R. Inst. Nav. Archit. Paper W1 (1973).

Bishop, R. E. D. & Johnson, D. C. 1960 The mechanics of vibration. Cambridge University Press.

Cleary, W. A., Robertson, J. B. & Yagle, R. A. 1971 The results and significance of the strength studies on the
Great Lakes bulk ore carrier ¢ Edward L. Ryerson’. S.N.A.M.E. Symposium on Hull Stresses in Bulk Carriers
in the Great Lakes and Gulf of St Lawrence Wave Environment, July 1971, paper G.

Fukuda, J. 1966 Computer program results for ship behaviour in regular head waves. Proc. 11th ITTC, Tokyo,

433-436.

Gerritsma, J. & Beukelman, W. 1967 Analysis of the modified strip theory for the calculation of ship motions and
wave bending moments. Int. Shipbldg Prog. 14, 319-337.

Goodman, R. A. 1971 Wave-excited main hull vibration in large tankers and bulk carriers. Naval Architect (J.
R. Inst. Nav. Archit.), no. 1, 167-184. ‘

Grim, O. 1960 A method for a more precise computation of heaving and pitching motions in smooth water and
in waves. 3rd Symp. on Naval Hydrodynamics, Scheveningen, 483-518. Washington: U.S. Govt. Printing Office,
(1962).

Hoffman, D. 1972 Analysis of ship structural loading in a seaway. Marine Technol. 9, 173194,

1.S.S.C. 1970 Proc. Fourth Int. Ship Struct. Congr. Tokyo.

LT.T.C. 1969 Proc. Twelfth-Int. Towing Tank Conf. Rome.

Joosen, W. P. A., Wahab, R. & Woortman, J. J. 1968 Vertical motions and bending moments in regular waves.
A comparison between calculation and experiment. Int. Shipbldg Prog. 15, 15-31.

Kaplan, P. 1969 Development of mathematical models for describing ship structural response in waves. Rep.
Ship Struct. Comm. natn. Res. Coun., Wash, no. SSC-193.

Korvin-Kroukowsky, B. V. & Jacob, W.R. 1957 Pitching and heaving motions of a ship in regular waves.
Trans. Soc. nav. Archit. mar. Engrs, N.Y. 65, 590-632. )

Little, R. S. & Lewis, E. V. 1971 A statistical study of wave-induced bending moments on large oceangoing
tankers and bulk carriers. T7rans. Soc. nav. Archit. mar. Engrs, N.Y. 79, 117-156.

Miles, M. 1970 The theoretical statistical distribution of the peaks of combined springing and wave-induced
stress loads. Rep. Ship Lab. natn. Res. Coun. Canada, no LTR-SH 103.

Moor, D. 1. 1967 Longitudinal bending moments on models in head seas. T7ans. R. Inst. Nav. Archit. 109, 117-165,

Newman, J. N. 1970 Applications of slender body theory in ship hydrodynamics. Ann. Rev. Fluid Mech. 2, 67-94.

Ogilvie, T. F. 1969 The development of ship-motion theory. Rep. Dep. Naval Archit. Mar. Engng Univ. Michigan,
no. 021.

Thomson, W. T. 1965 Vibration theory and applications. London: George Allen and Unwin.

van Gunsteren, F. F. 1970 Springing, wave-induced ship vibrations. Int. Shipbldg Prog. 17, 333-347.

Weinblum, G. & St Denis, M. 1950 On the motions of ships at sea. Trans. Soc. nav. Archit. mar. Engrs, N.Y. 58,
184-248.


http://rsta.royalsocietypublishing.org/

